
Database
Requirements for
Modern Development
By Gerald Venzl, Oracle

August 2017

Introduction

Widespread Programming Language Support

In the application development community, the function

of database technology is well understood. Simply put,

databases (also known as data stores) are used to store

and retrieve data needed for application processing. Even if

there isn’t a data store in your initial architectural diagram,

data flowing through your application will likely touch one or

more databases, sooner or later.

Database software has been widely deployed over

a long period of time. First introduced in the 1970s,

modern database systems differ greatly from original

implementations that evolved from data banks to database

systems. Today, the evolution of database technology

continues. While every developer knows that databases

are useful for managing data, modern day development

techniques and technologies require that databases provide

much more than just simple SQL statements that can read

and write data to disk. In fact, modern database technology

must provide three core capabilities to be truly useful to

developers:

•	 Widespread programming language support

•	 The ability to manage multiple data structures

•	 Transparent data analysis capabilities across all data

structures using SQL

In selecting a database, it’s important to consider how

these capabilities can impact application development, and

the quality, simplicity, and productivity that they can bring to

your development projects.

Developers can choose from an ever-increasing number of

available programming languages and frameworks. To be

useful to developers, given their programming language

of choice, modern databases must integrate with as

many languages and frameworks as possible. To simplify

integration efforts, languages frequently feature standard

APIs that can interact directly with databases—such an

API implementation is commonly referred to as a database

driver. Well-known examples are the Java Database

Connectivity (JDBC) API for Java, the ADO.NET framework

for Microsoft .NET applications, and the PEP 249—Python

Database API specification for the Python scripting

language, to name a few.

Almost every programming language has either its own

interface specification or can interact with a canonical

API that allows the language to talk to a database on

the other end. Common canonical APIs are the Open

Database Connectivity API (ODBC) and Representational

State Transfer (REST) API. The use of REST APIs has

mushroomed in the last couple of years, especially for

web application development. Although REST was first

introduced in 2000, today’s architectural designs—such

as microservices or stateless cross-web communication

in general—make REST a vital component in the toolbox of

virtually all modern-day developers.

Providing direct access from within the application code

via APIs is one way to achieve database integration.

However, some modern databases support hiding database

interaction entirely behind a REST call, abstracting the

task of data access altogether, which helps to improve

developer productivity. This concept is nothing new. Many

programming languages have so-called Object-Relational

Mapping (ORM) frameworks that translate between

the object-oriented data structures in programs and the

relational model of databases. Such frameworks usually

represent themselves as libraries to the developer that

are used to abstract data interaction from the application

logic. While abstracting the data access layer in this way

can boost developer productivity, the task of managing

the abstraction is still the developer’s responsibility.

Oracle | Database Requirements for Modern Development 2

REST-based access, on the other hand, also moves the

management task out of the developer’s remit, enabling

even greater productivity gains.

Oracle supports a large and varied development community

(both internally and externally), so the company recognizes

the advantages of broad language support. Today, more

than 30 programming languages, including the popular

languages shown in Figure 1, can access the various

database technologies that Oracle provides. In addition,

Oracle actively participates in industry-wide efforts to refine

standards for database interfaces, including JDBC, Python

PEP 249, and PHP, among others.

Oracle anticipated the popularity of REST and the emerging

trend of data access abstraction via REST. In 2014, Oracle

introduced a database component that allows RESTful

access to data stored in a relational database, document

store, or key-value format, making Oracle a pioneer in

providing standardized REST interfaces for the data access

layer. The component is known as Oracle REST Data

Services (ORDS). You can find out more about Oracle REST

Data Services here.

Oracle | Database Requirements for Modern Development 3

Oracle Supported Programming Languages

Figure 1: Popular programming languages interface easily with different database technologies from Oracle.

Objective-C

Figure 2: Oracle REST Data Services is
included with both Oracle Database and
Oracle SQL Developer installations. It is
supported in Weblogic, Tomcat, Glassfish,
and as a standalone application running
Jetty in embedded mode.

PL/SQL

Java / C

REST

Oracle REST
Data Services

NoSQL

Oracle NoSQL
Database

Oracle Database
(Document Store)

JSON

Oracle Database
(Relational)

http://oracle.com/technetwork/developer-tools/rest-data-services/overview/index.html

Multi-Model Persistence
Beyond support for a wide range of programming languages,

it’s critical that a database technology provides easy-to-use

capabilities for general-purpose access and data management.

Such capabilities are a fundamental strength for databases

that organize data using a relational model.

Around 1970, the relational model was conceived to

protect database users from having to know how data

is explicitly organized within a database. It is this principal

that has allowed the relational model to be the most widely

used general-purpose data structure for more than 40 years.

Given its long history, the relational model is very well

understood, and it is still widely selected for development

projects today. Most of the time, the relational model is a

good fit for modern-day applications, but there are some

use cases in which the relational model may not be the

optimal fit. For these use cases, other data models—such

as data stores based on documents, graphs, or key-value

pairs—are often better suited. This has led to a new design

pattern known as polyglot persistence, which is the concept

of applying different data models to address different data

storage requirements, even within the same application.

Document-oriented databases, or document stores, are

especially popular among developers today. A document

database is one that typically stores JSON-based data

structures. (Again, the concept is not new. XML databases,

a subclass of document databases, were introduced in the

early 2000s.) A document data structure is self-describing,

meaning that the data is structured by attributes and

values that can be hierarchically structured within the same

document. Because both the schema and data reside within

a document, they offer an advantage in that the document

structure can be changed at any given point in time—a

schema change within the document has no impact

anywhere outside of the document. This characteristic is

referred to as schema-on-read, while a relational model is

known as schema-on-write.

With the schema-on-read approach, you are not required

to design the data model before storing the data; you

simply write the information to the data store. In contrast,

with schema-on-write, you must predefine the data model

before loading data into the relational structure. Thus, a

schema-on-read approach can help to enhance developer

productivity since there’s no need to construct the data

model first.

However, when it comes to exchanging information

between separate systems, schema-on-read provides a

degree of autonomy with respect to how data is consumed,

and one system can use a different data interpretation than

another. While this provides some degree of flexibility, it can

also result in added complexity for data analysis, pointing to

a potential downside of using the document model. Given

that the schema is contained within the data structure itself,

different interpretations of the same data can occur. For

example, one document can refer to an email address with

the attribute “emailAddress”, while another document may

refer to it as “email_address”. Both attributes contain the

same information but do not guarantee that the information

is interpreted in that way.

As a result, some document databases now add support for

schema validation, helping to make sure that attributes are

presented correctly. If a document database does not offer

this capability, then it is the developer’s responsibility to

guarantee that the data is interpreted correctly and prevent

the return of an inconsistent answer to the user.

Modern-day databases are often multi-model—that is,

they give developers the choice of the desired data model

without having to worry about which database to use and

how to connect to it (databases that support only a

single data model are known as single-model databases).

Multi-model databases provide developers with a single

connection method and a common API for storing and

retrieving data, regardless of the data format. Data storage

and retrieval is usually performed via standard SQL

operations that provide the desired transparency. By using

standard SQL operations, a developer can immediately

leverage a multi-model database without having to refactor

code or interact with a different set of APIs.

Oracle | Database Requirements for Modern Development 4

Single-model databases are optimally suited for use cases

that are well-understood from the beginning, where there

is little probability of changing requirements that would

alter the data format. In addition, single-model databases

typically provide special optimizations for the data format

being managed, which is why it can be more difficult for

a multi-model database to support different data formats

as efficiently.

Oracle provides both single-model and multi-model

database technologies. Single-model databases from Oracle

include (although not exclusively) Berkeley DB, Berkeley

DB XML Data Store, Oracle NoSQL Database, and Oracle

Essbase. Other databases from Oracle can manage multiple

data models (Figure 4). Oracle Database 12c, for example,

supports multi-model database capabilities, enabling

scalable, high performance data management and analysis

(for more information, see “Multimodel Database with

Oracle Database 12c Release 2”)

Data Access and Analysis via SQL
The true power of databases is not how fast they can store

a piece of data onto a disk or in which model the data is

stored. Instead, the true power of databases lies within the

retrieval and analysis of the data. One of the most important

success factors of a database (if not the most important

success factor) is the support of a simple-to-understand,

universal query language that can be applied over all data.

Today, the de facto industry standard is SQL (Structured

Query Language). SQL allows developers to interact with

databases while providing the same capability to business

users, allowing them to extract value from the data without

writing lines and lines of code.

The advent of NoSQL databases seemingly calls into

question the usefulness of SQL. However, every

mainstream NoSQL database vendor has either adopted

SQL or an SQL-like engine to interact with its database,

validating the requirement for SQL language support.

Developer surveys reinforce the necessity of offering SQL

support, showing year over year that SQL is one of the

most popular languages in daily use by developers. Most

developers throughout the world are familiar with SQL, and

those who are not can typically pick up the basics quickly

because the syntax is English language-based.

Oracle | Database Requirements for Modern Development 5

Figure 3: Oracle offers database technologies that can manage multiple data models.

Oracle Supported
Data Models

JSON
Documents

K/V

Key/Value

JSON

XML Documents

XML

Property
Graphs

RDF

Relational

Objects

SpatialLabeled
Graphs

While SQL’s basic functions concern data storage and

retrieval, the language is much more powerful than that.

SQL provides a rich set of analytical capabilities to users,

whether that user is a developer, data scientist, or business

analyst. SQL supports running complex computations

against data, and runs them as close as possible to the

data. Databases that do not provide SQL (or that only

provide marginal SQL support) force developers to deal

with complex business data analysis requirements directly

in application code, decreasing developer productivity.

Indeed, using SQL allows developers to respond to

analytical changes in business requirements more quickly

and efficiently, so proficiency with SQL is a desirable

programming skill.

Oracle sees SQL as an important component of

modern-day data management, and actively participates

in the ISO SQL standard committee. The SQL language

continues to evolve since its original release more than

30 years ago, with the latest SQL:2016 standard revision

released in December 2016. Because other databases only

provide support for the standard’s SQL-92 or SQL:1999

revisions, they may not include important analytical

capabilities that have been added over time.

Oracle | Database Requirements for Modern Development 6

Objective-C

SQL Integration

Figure 4: Oracle SQL is integrated across the different data models and accessible from all programming languages.

SQL

K/V

Key/Value XML Documents

XML

RDF Objects

JSON
Documents

JSON

Property
Graphs

Relational Labeled
Graphs

Spatial

Conclusion
As highlighted in this paper, it is paramount for modern

databases to provide wide spread programming language

support and the ability to manage multiple data structures

and transparent data analysis capabilities across all those

data structures. With all of those combined, a database

is best fit for managing modern day requirements that

go beyond the original tasks of a relational database

and will provide a rock solid data management solution

as compared to just a mere data storage solution.

Oracle | Database Requirements for Modern Development 7

Multi-Model
Data Structure

Support

Broad Programming
Language Support

Figure 5: Modern development requirements for databases.

Support for
Transparent

Data Analysis
Using SQL

Copyright © 2017, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the contents hereof are
subject to change without notice. This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally
or implied in law, including implied warranties and conditions of merchantability or fitness for a particular purpose. We specifically disclaim any liability with
respect to this document, and no contractual obligations are formed either directly or indirectly by this document. This document may not be reproduced
or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission. Oracle and Java are registered
trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Visit developer.oracle.comGet Oracle Cloud now

Try Oracle Cloud for Free

http://www.developer.oracle.com
https://shop.oracle.com/apex/f?p=CLOUD:FREE&intcmp=techpaper-db

